The Startup Powering The Data Behind AGI

In this episode of Gradient Dissent, Lukas Biewald talks with the CEO & founder of Surge AI, the billion-dollar company quietly powering the next generation of frontier LLMs. They discuss Surge's origin story, why traditional data labeling is broken, and how their research-focused approach is reshaping how models are trained.

You’ll hear why inter-annotator agreement fails in high-complexity tasks like poetry and math, why synthetic data is often overrated, and how Surge builds rich RL environments to stress-test agentic reasoning. They also go deep on what kinds of data will be critical to future progress in AI—from scientific discovery to multimodal reasoning and personalized alignment.


It’s a rare, behind-the-scenes look into the world of high-quality data generation at scale—straight from the team most frontier labs trust to get it right.


Timestamps:

00:00 – Intro: Who is Edwin Chen?

03:40 – The problem with early data labeling systems

06:20 – Search ranking, clickbait, and product principles

10:05 – Why Surge focused on high-skill, high-quality labeling

13:50 – From Craigslist workers to a billion-dollar business

16:40 – Scaling without funding and avoiding Silicon Valley status games

21:15 – Why most human data platforms lack real tech

25:05 – Detecting cheaters, liars, and low-quality labelers

28:30 – Why inter-annotator agreement is a flawed metric

32:15 – What makes a great poem? Not checkboxes

36:40 – Measuring subjective quality rigorously

40:00 – What types of data are becoming more important

44:15 – Scientific collaboration and frontier research data

47:00 – Multimodal data, Argentinian coding, and hyper-specificity

50:10 – What's wrong with LMSYS and benchmark hacking

53:20 – Personalization and taste in model behavior

56:00 – Synthetic data vs. high-quality human data


Follow Weights & Biases:

https://twitter.com/weights_biases

https://www.linkedin.com/company/wandb